T Crouzier, H Jang, J Ahn, R Stocker, K Ribbeck
Biomacromolecules 14 (9), 3010-3016
Publication year: 2013

Mucus is that slimy substance that drips out of our noses on these cold winter days. But did you know it is more than that? It is actually an incredibly important substance that covers your eye, nose, lungs, digestive tract and the female genital tract to protect you from various hazards such as bacteria and viral infections. Mucus is for most part composed of the mucin glyco-proteins. Mucins assemble into polymers that play divers functions such as acid-protecting agent, bacterial biofilm suppressors and highly efficient lubricating and hydrating agents.

In this study published in Biomacromolecules, we show that mucins extracted from pig stomach or cow salivary glands can spontaneously form coatings on certain surfaces and prevent the adhesion of mammalian cells. By controlling the deposition of the mucin coating, we were able to pattern surfaces with cells, excluding them from mucin-covered areas.

Figure 1. Mucins can be pattered on the surface by making the surface with posts. Mucins bind to the surfaces only in exposed areas.

Figure 1. Mucins can be pattered on the surface by masking the surface with posts. Mucins will then only bind to the exposed areas.

Cell patterning is usually achieved with synthetic polymers that require some chemical engineering efforts to properly prevent cell adhesion. Here, we show that mucins naturally possess properties similar to these synthetic polymers and that they do not require any modification to firmly attach to the surface and repel cells. Mucins are so simple to use as a cell-repellent coating, that they can easily be coupled with simple patterning technique accessible to many laboratories.

Figure 2. Mucin-coated area is labeled in green. Cells gather in areas that are not covered by mucins.

Figure 2. The mucin-coated area is labeled in green. Cells gather in areas that are not covered by mucins.

Preventing cell adhesion is a desirable feature for many biomaterials since it can help improve the overall biocompatibility of implants by preventing adhesion of immune cells. Cell patterning is also a powerful tool used by cell biologists and tissue engineers to better understand and control the formation of tissues.

This work proves further that mucins are more than an important component of our physiology, but also a useful material. When assembled into the right forms, mucins become cell-repellent coatings, anti-clotting agents, bacteria-repellent agents, and delivery vehicle for drugs.

Find the article on the publisher’s website here.