Marczynski, Matthias, Bizan N. Balzer, Kun Jiang, Theresa M. Lutz, Thomas Crouzier, and Oliver Lieleg
Colloids and Surfaces. B, Biointerfaces, November, 110614.
Publication year: 2019

In the human body, mucin glycoproteins efficiently reduce friction between tissues and thereby protect the mucosa from mechanical damage. Mucin lubricity is closely related to their molecular structure: it has been demonstrated previously that the hydrophobic termini of mucins critically contribute to their lubricity. If and how intrinsic sources of negative charge in mucins, e.g., sulfated glycans and sialic acid residues, are relevant for the tribological behavior of mucin solutions has, however, not been addressed yet. In this manuscript, we show that the removal of either sialic acid or sulfate groups, which comprise only a minor amount of the total molecular weight, from MUC5B drastically reduces its lubricity. For MUC5AC solutions, however, this effect only occurs once mucin-associated DNA is removed as well. We find that neither the hydration state nor the average conformation of mucins adsorbed onto hydrophilic or hydrophobic surfaces is affected by the removal of anionic sugars. Instead, our data suggests that a loss of anionic sugars mainly influences the dynamic adsorption process of mucins onto both hydrophilic and hydrophobic surfaces.

Leave a Reply

Your email address will not be published. Required fields are marked *